Aljabar
Penyebut
B = x + 1/(x + 1/x)
B = x + x/(x² + 1)
B = (x³ + 2x)/(x² + 1)
Pembilang
A = 1^(x + 1^(x + 1^x))
utk x ∈ R dan x ≠ 0
A = 1
soal = A/B = 10/9
1/B = 10/9
B = 9/10
(x³ + 2x)/(x² + 1) = 9/10
10x³ + 20x = 9x² + 9
10x³ – 9x² + 20x – 9 = 0
(2x – 1)(5x² – 2x + 9) = 0
x = 1/2 → akar real
Nilai x = 1/2